skip to main content


Search for: All records

Creators/Authors contains: "Ong, Rene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project. 
    more » « less
  2. The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project. 
    more » « less
  3. We present a catalog of results of gamma-ray observations made by VERITAS, published from 2008 to 2020. VERITAS is a ground based imaging atmospheric Cherenkov telescope observatory located at the Fred Lawrence Whipple Observatory (FLWO) in southern Arizona, sensitive to gamma-ray photons with energies in the range of ∼ 100 GeV - 30 TeV. Its observation targets include galactic sources such as binary star systems, pulsar wind nebulae, and supernova remnants, extragalactic sources like active galactic nuclei, star forming galaxies, and gamma-ray bursts, and some unidentified objects. The catalog includes in digital form all of the high-level science results published in 112 papers using VERITAS data and currently contains data on 57 sources. The catalog has been made accessible via GitHub and at NASA's HEASARC. 
    more » « less
  4. Very-high-energy gamma rays (traditionally above ∼100 GeV) are the most energetic cosmic electromagnetic radiation observed and trace the presence of charged particles of even higher energy. These gamma rays can provide unique views of the strong magnetic fields around neutron stars and the strong gravitational fields around neutron stars and black holes. At the other extreme of density, they can probe the environment of cosmic voids. This white paper briefly summarizes what can be learned over the coming decade about extreme astrophysical environments through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. The majority of the material is drawn directly from Science with the Cherenkov Telescope Array, which describes the overall science case for CTA. We request that authors wishing to cite results contained in this white paper cite the original work. 
    more » « less